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Abstract. A quantum statistical formalism which accommodates both positive and negative
temperatures is studied. The Dirac contour representation is used to extend the harmonic
oscillator Hilbert space into a larger space which is suitable for the description of quantum
systems at both positive and negative temperatures. The analytic continuation of various physical
quantities into the negative temperature region is examined in detail. The formalism can be useful
for the description of systems which are excited to higher states, and which decay into the lower
states.

1. Introduction

The concept of negative temperatures has been known for a long time [1]. It is an interesting
concept in itself, and it can also be useful in the description of systems that are excited
to higher states and whose decay into the lower states is described through the negative
temperature formalism. It is thus related to Glauber’s inverted oscillator [2] which also
describes such systems.

Although there has been a lot of work on the concept of negative temperatures in
the context of classical thermodynamics, it has never really been properly introduced into
quantum statistical mechanics. In a recent publication [3] we have pursued this idea. We
have shown that a contour representation introduced by Dirac [4] extends rather naturally
into a generalized contour representation that accomodates both the positive and negative
temperature Hilbert spaces. It is the purpose of this paper to expand considerably our
previous work and also to present the technical details associated with it.

In section 2 we discuss the Dirac contour representation at positive temperatures.
Holomorphic representations have been used extensively in various areas of physics. They
exploit the powerful theory of analytic functions in a quantum context. Examples include
the Bargmann representation [5], other analytic representations in the context of coherent
states [6–9] and in many-body theory [10], and conformal field theories (see e.g. [11]),
etc. In this section we discuss the Dirac contour representation and its relationship to the
more familiar representation of Bargmann. The results are interesting in their own right,
regardless of the application to negative temperatures that we discuss later. For example,
a similar formalism (at positive temperatures) has been used in [9] in an applied quantum
optics context.
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In section 3 we extend the contour formalism so that we can describe both positive and
negative temperatures. We define explicitly the Hilbert spaces associated with positive and
negative temperatures and define creation and annihilation operators, number eigenstates,
coherent states, etc. We thus provide a solid foundation for the description of quantum
systems at negative temperatures. Although almost every textbook on thermodynamics
introduces the concept of negative temperature, the foundations for a quantum formalism
at negative temperatures (i.e. an explicit description of the Hilbert space, creation and
annihilation operators at negative temperatures and their relation to their counterparts at
positive temperatures, etc) have hitherto been missing. This is precisely the aim of section 3.

In section 4 we expand further these ideas. We study the harmonic oscillator formalism
in the enlarged Hilbert spaceHp ⊕ Hn that accomodates both positive and negative
temperatures. We introduce the temperature reversal operator and explore deep connections
between the positive and negative temperature parts of various operators and states. In
particular we consider displacement operators and coherent states and show how the positive
temperature parts are related to the negative temperature parts through analytic continuation.

We conclude in section 5 with a discussion of our results.

2. The Hilbert spaceHp in the Dirac contour representation

Let Hp be the usual harmonic oscillator Hilbert space and|N;p〉 the number eigenstates,

〈N;p|M;p〉 = δNM (1)
∞∑
N=0

|N;p〉〈N;p| = 1p. (2)

The indexp (for positive temperatures) is used in conjuction with the usual notation in
order to distinguish the states and operators associated with the Hilbert spaceHp which are
studied in this section, from their negative-temperature counterparts denoted with the index
n which are associated with the Hilbert spaceHn and which are studied in the next section.
Let ap anda†p be the usual annihilation and creation operators, respectively,

ap|N;p〉 = N1/2|N − 1;p〉 (3)

a†p|N;p〉 = (N + 1)1/2|N + 1;p〉. (4)

In the Dirac contour representation [4] ofHp, the normalized eigenkets and eigenbras of
the number operatora†pap are respectively represented as

|N;p〉 → (N !)−1/2zn 〈N;p| → (N !)1/2z−N−1 (5)

whereN = 0, 1, 2, . . . . More generally, arbitrary normalized states inHp,

|f ;p〉 =
∑
N

fN |N;p〉 〈f ;p| =
∑
N

f ∗N 〈N;p|
∑
N

|fN |2 = 1 (6)

where, here and henceforth, all oscillator sums run from zero to infinity, are represented as

|f ;p〉 →
∑
N

fN(N !)−1/2zN ≡ f pk (z) (7)

〈f ;p| →
∑
N

f ∗N(N !)1/2z−N−1 ≡ f pb (z) (8)

where the indicesk and b refer to ket and bra, respectively. The functionf pk (z) is
a holomorphic function in the complex plane. In fact it is the same as the Bargmann
representation of|f ;p〉 which is known to be an analytic function of orderρ 6 2 (and of
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type σ 6 1
2 if ρ = 2). The functionf pb (z) is the Borel transform off pk (z) and is clearly

non-analytic.
Using the relation,∮

C ′

dz

2π i

exp(ζ ∗z)
zN+1

= (ζ ∗)N

N !
(9)

whereC ′ is an anticlockwise contour enclosing the origin, we prove the ‘generalized Fourier
transform’ relation betweenf pb (z) andf pk (z),∮

C

dz

2π i
f
p

b (z) exp(ζ ∗z) = [f pk (ζ )]
∗ (10)

under conditions of convergence which need to be specified on an individual basis, but which
generally amount to the anticlockwise contourC enclosing the singularities off pb (z). The
inverse formula is given by the Laplace transform,

f
p

b (z) =
1

z

∫ ∞
0

dt e−t
[
f
p

k

(
t

z∗

)]∗
. (11)

In order to prove this we start from equation (7) which we rewrite as

f
p

k

(
t

z∗

)
=
∑
N

fN(N !)−1/2

(
t

z∗

)N
(12)

where t is a real number. We then multiply both sides by e−t and integrate fort taking
values from 0 to∞. Using the fact that∫ ∞

0
dt e−t tN = N ! (13)

we prove equation (11). The transformation (11) is of course known to be the inverse of
equation (10) and here we gave an explicit proof in our own context. The scalar product
of two states|f ;p〉 and |g;p〉 is given by

〈f ;p|g;p〉 =
∮
C

dz

2π i
f
p

b (z)g
p

k (z) =
∞∑
N=0

f ∗NgN . (14)

As an example we consider the coherent state|A;p〉:
|A;p〉 → exp(− 1

2|A|2+ Az) (15)

〈A;p| → exp(− 1
2|A|2)(z− A∗)−1 |z| > |A|. (16)

We observe that the bra-state representation is valid only for|z| > |A|, an effect of which
is that in contour integrations involving this state, such as those in equations (10) and (14),
the pointA must lie inside the contourC.

We next study the relationship between the Dirac contour representation and the more
familiar Bargmann representation [5], in which the normalizable ket state|f ;p〉 is also
represented by the holomorphic functionf pk (z) but where its corresponding adjoint bra
state〈f ;p| is represented by the complex conjugate function [f

p

k (z)]
∗. By inserting into

equation (14) the relation,

g
p

k (z) =
∫

d2ζ

π
exp(ζ ∗z− |ζ |2)gpk (ζ ) (17)

which is valid for all holomorphic functionsgpk (z), and by making use of equation (10), we
readily derive the alternative relation,

〈f ;p|g;p〉 =
∫

d2ζ

π
e−|ζ |

2
[f pk (ζ )]

∗gpk (ζ ) (18)
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which is the usual relation for the inner product in the Bargmann representation.
An arbitrary operator2p

2p ≡
∞∑

M,N=0

2MN |M;p〉〈N;p| (19)

is represented by the function

2p(z1, z2) =
∞∑

M,N=0

2MN

(
N !

M!

)1/2
zM1

zN+1
2

. (20)

Its trace is given by the formula,

Tr2p ≡
∑
N

2NN =
∑
N

∮
C1

∮
C2

dz1 dz2

(2π i)2
2p(z1, z2)

zN2

zN+1
1

= − 1

4π2

∮
C1

∮
C2

dz1 dz2

z1− z2
2p(z1, z2) C2 < C1 (21)

where the integrations overz1 and z2 run anticlockwise around the contoursC1 andC2

respectively, which encircle the origin. The summation overN converges to the quoted
result if and only if |z1| > |z2|. This implies that the ring of the contourC2 (defined as
rmin 6 |z| 6 rmax, wherermin andrmax are the minimum and maximum distances respectively
from the origin to points on the contour) lies wholly inside the ring of the contourC1. This
condition is denoted symbolically byC2 < C1. One may also readily check that formally
we have that the mode of action of2p on an arbitrary ket state|g;p〉 has the Dirac contour
representation,

2p|g;p〉 →
∮
C

dz′

2π i
2p(z, z

′)gpk (z
′) (22)

with a similar representation for〈f ;p|2p,

〈f ;p|2p →
∮
C

dz′

2π i
f
p

b (z
′)2p(z′, z). (23)

Similarly, if 21;p and22;p are two operators inHp represented by the functions21;p(z1, z2)

and 22;p(z1, z2) respectively, it is easy to show that their product takes the form of a
generalized convolution,

21;p22;p →
∮
C

dz

2π i
21;p(z1, z)22;p(z, z2). (24)

As examples we now consider the representations of the operators1p, ap, a†p, anda†pap.
For the unit operator1p, 2MN = δM,N and equation (20) converges to(z2 − z1)

−1 when
|z1| < |z2|. For |z1| > |z2| the sum diverges. However, the latter case implies, for example,
that the pointz in equation (22) lies outside the contourC, and hence that the result is
zero. In this sense we are, therefore, justified to say that for|z1| > |z2|, the Dirac contour
representation of1p is zero. We write accordingly,

1p → (z2− z1)
−1θ(|z2| − |z1|) (25)

whereθ(x) is the unit step function;θ(x) ≡ 1 for x > 0, andθ(x) ≡ 0 for x 6 0. Similarly
we prove:

ap → (z2− z1)
−2θ(|z2| − |z1|) (26)

a†p → z1(z2− z1)
−1θ(|z2| − |z1|) (27)

a†pap → z1(z2− z1)
−2θ(|z2| − |z1|). (28)
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More generally we show that the following representations hold for arbitrary (integral)
powers of the creation and destruction operators,

(a†p)
M → zM1 (z2− z1)

−1θ(|z2| − |z1|) (29)

(ap)
N → N !(z2− z1)

−N−1θ(|z2| − |z1|). (30)

Use of equation (24) also yields the relations for normal-ordered and antinormal-ordered
products,

(a†p)
M(ap)

N → N !zM1 (z2− z1)
−N−1θ(|z2| − |z1|) (31)

(ap)
N(a†p)

M →
[(

d

dz1

)N
zM1

z2− z1

]
θ(|z2| − |z1|). (32)

The further use of equation (22) then also shows that,

(a†p)
M(ap)

N |g;p〉 → zM
(

d

dz

)N
g
p

k (z) (33)

(ap)
N(a†p)

M |g;p〉 →
(

d

dz

)N
zMg

p

k (z). (34)

It is seen that action of the operatorsa†p andap on ket states|g;p〉 within Hp is equivalent
to multiplication byz and differentiation with respect toz, respectively, of the holomorphic
function gpk (z), i.e.

a†p → z (35)

ap → d/dz (36)

just as in the usual Bargmann representation. However, it is important to realize that the
mode of action ofa†p andap with respect to the bra states〈f ;p| in terms of the corresponding
non-analyticfunctionsf pb (z) cannot be so simply expressed.

In order to exemplify the use of the above formalism we now prove that the eigenkets
of the number operators are indeed the number eigenstates:

1

2π i

∮
C

z1

(z1− z2)2
zN2 (N !)−1/2 dz2 = NzN1 (N !)−1/2. (37)

We also prove that the eigenkets of the annihilation operator are indeed the coherent states:

1

2π i

∮
C

(z1− z2)
−2 exp[− 1

2|A|2+ Az2] dz2 = A exp[− 1
2|A|2+ Az1]. (38)

We also consider the thermal density operator inHp,

ρ th
p (β) ≡ (1− e−β) exp(−βa†pap) β > 0. (39)

Its Dirac contour representation is

ρ th
p (β; z1, z2) = 1− e−β

z2− e−βz1
θ(|z2| − e−β |z1|). (40)

For later purposes we also consider the ‘entropy operator’:

Vp(βp) ≡ ρ th
p ln ρ th

p =
∞∑
N=0

(1− e−βp )e−Nβp [−Nβp + ln(1− e−βp )]|N;p〉〈N;p|. (41)
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The trace of this operator with a minus sign, is the von Neumann entropy of the thermal
density matrix. In the Dirac contour representationVp is represented by the function:

Vp(βp; z1, z2) = (1− e−βp )
[
− βpz1e−βp

[z2− z1e−βp ]2
+ ln(1− e−βp )
z2− z1e−βp

]
θ(|z2| − e−βp |z1|). (42)

We next consider squeezed states defined as

|A; r, θ〉 = S(r, θ)|A〉 (43)

S(r, θ) = exp[− 1
4re
−iθ (a†)2+ 1

4re
iθa2] (44)

whereS(r, θ) is the squeezing operator. It is easy to show that

〈z∗|A; r, θ〉 = (1− |σ |2)1/4 exp[αz2+ βz+ γ − 1
2|z|2] (45)

σ = − tanh( 1
2r)e

−iθ (46)

α = 1
2σ (47)

β = A(1− |σ |2)1/2 (48)

γ = − 1
2σ
∗A2− 1

2|A|2. (49)

We can now evaluatef pk (z):

f
p

k (z) = (1− |σ |2)1/4 exp[αz2+ βz+ γ ] (50)

and use equation (11) (in conjunction with equation (3.322.2) of [12]) to get

f
p

b (z) = i
( π

2σ ∗
)1/2

(1− |σ |2)1/4 exp

[
−1

2
|A|2− 1

2σ ∗
(A∗)2+ A

∗

σ ∗
z(1− |σ |2)1/2− z2

2σ ∗

]
×
{

1−8
[

iA∗(1− |σ |2)1/2
(2σ ∗)1/2

]}
(51)

where8 is the error function. This result is valid for<(− z2

2σ ∗ ) > 0.

3. The Hilbert spaceHn and its synthesis with the Hilbert spaceHp

In section 2 we used functions of the type (7) for the bra representations of states and
functions of the type (6) for the ket representations. Of course, it could be the other way
around, i.e. we could equally well use functions of the type (6) for the bra representations
and functions of the type (7) for the ket representations. We present this in this section
and get another Hilbert spaceHn which by itself is the same asHp and has no novel
features; however, in conjuction withHp it has several novel properties which will lead to
its interpretation as the Hilbert space for the harmonic oscillator at negative temperatures.

The Hilbert spaceHn is spanned by the number eigenstates|N; n〉 which obey relations
analogous to equations (1) and (2) with the indexp replaced byn. The annihilation and
creation operatorsan anda†n obey relations analogous to equations (3) and (4). In the Dirac
contour representation the number eigenstates inHn are represented as:

|N; n〉 → (N !)1/2z−N−1 〈N; n| → (N !)−1/2zN . (52)

Arbitrary states|f ; n〉 and 〈f ; n| in Hn have analogous expansions to that in equation (6)
for Hp, and have the corresponding Dirac contour representations,

|f ; n〉 →
∑
N

fN(N !)1/2z−N−1 ≡ f nk (z) (53)

〈f ; n| →
∑
N

f ∗N(N !)−1/2zN ≡ f nb (z). (54)
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The scalar product is given by equation (14). It is clear that the overlap of any state inHn
with any state inHp is identically zero.

We next consider general operators inHp ⊕Hn,
2 ≡

∑
M,N

AMN |M;p〉〈N;p| +
∑
M,N

BMN |M; n〉〈N;p|

+
∑
M,N

CMN |M;p〉〈N; n| +
∑
M,N

DMN |M; n〉〈N; n|. (55)

They are represented by the function

2(z1, z2) =
∑
M,N

AMN

(
N !

M!

)1/2
zM1

zN+1
2

+
∑
M,N

BMN
(M!N !)1/2

zM+1
1 zN+1

2

+
∑
M,N

CMN
zM1 z

N
2

(M!N !))1/2
+
∑
M,N

DMN

(
M!

N !

)1/2
zN2

zM+1
1

. (56)

The analogues of equations (25)–(28) are,

1n→ (z1− z2)
−1θ(|z1| − |z2|) (57)

an→ z2(z1− z2)
−1θ(|z1| − |z2|) (58)

a†n→ (z1− z2)
−2θ(|z1| − |z2|) (59)

a†nan→ z2(z1− z2)
−2θ(|z1| − |z2|). (60)

Comparison of equations (25), (26) and (28) with (57), (59) and (60) shows,

J ≡ 1p − 1n→ (z2− z1)
−1 (61)

a ≡ ap + a†n→ (z2− z1)
−2 (62)

a†pap + ana†n→ z1(z2− z1)
−2. (63)

In order to analytically continue the operatora†p of equation (27) with the operatoran
of equation (58) we need to introduce first an ‘extended’ destruction operatorãn,

ãn ≡ an + |0;p〉〈0; n|. (64)

Using equations (56) and (58) we see that the operatorãn is represented by the function:

ãn→ z1 (z1− z2)
−1 θ (|z1| − |z2|) (65)

and combining this with equation (27) we get

b† ≡ a†p − ãn→ z1 (z2− z1)
−1 . (66)

Equations (62) and (66) show that as we cross the boundary|z1| = |z2| (e.g. as the point
z passes through the contourC in equation (22)), the transitionap → a

†
n, a

†
p → −ãn takes

place for the individual creation and destruction operators. The corresponding transition
for an arbitrary functionf (ap, a

†
p) is, however, more subtle and is not simply obtained by

making the above transition for each individual operator, i.e.f (ap, a
†
p) 9 f (a

†
n,−ãn), as

is already apparent from equations (61) and (63).
We next introduce the complex conjugates of the operatorsa andb† in equations (62)

and (66) correspondingly:

a† = a†p + an (67)

b = ap − ã†n = ap − a†n − |0; n〉〈0;p|. (68)
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They are represented by the functions:

a†→ z1(z2− z1)
−1θ(|z2| − |z1|)+ z2(z1− z2)

−1θ(|z1| − |z2|) (69)

b→ (z2− z1)
−2ε(|z2| − |z1|)− 1

z1z2
(70)

whereε(x) = 1 if x > 1 andε(x) = −1 if x < 1. We easily see that:

[a, a†] = [b, b†] = 1p − 1n = J (71)

[a, b†] = [b, a†] = 1p + 1n = 1 (72)

[a, b] = |0; n〉〈1;p| − |1; n〉〈0;p| (73)

[a†, b†] = −|1;p〉〈0; n| + |0;p〉〈1; n| (74)

where1 is the operator in the total Hilbert spaceH:

1p + 1n = 1→ (z2− z1)
−1ε(|z2| − |z1|). (75)

It is easy to prove that

J 2 = 1 (76)

a†a = a†pap + ana†n (77)

b†b = a†pap + ãnã†n = a†a + |0;p〉〈0; n|. (78)

More generally we prove

(an)
N → (z2)

N(z1− z2)
−1θ(|z1| − |z2|) (79)

(a†n)
N → (N !)(z1− z2)

−N−1θ(|z1| − |z2|). (80)

Comparing equations (30) and (80) we see that

(ap)
N − (−a†n)N → (N !)(z1− z2)

−N−1. (81)

Note, however, that equations (29) and (79) show thataNn is not the analytic continuation
of (a†p)N .

The thermal density operatorρ th
n (β) in Hn, with β > 0, is defined exactly as in

equation (39), but withap → an. Its Dirac contour representation is given by,

ρ th
n (β; z1, z2) = 1− eβ

z2− eβz1
θ(−|z2| + eβ |z1|). (82)

We see clearly that equation (82) represents the analytic continuation of equation (40),
defined inHp, into what inHp is the ‘forbidden region’ β < 0 and|z2| < e−β |z1|. Whereas
the regionβ < 0 is forbidden within eitherHp or Hn alone, the enlarged spaceHp ⊕Hn
allows a precise and meaningful framework for a description of negative temperatures.We
now define the generalized thermal density operatorρ th(β), for all real values ofβ,

ρ th(β) =
{
ρ th
p (β) β > 0

ρ th
n (−β) β < 0

(83)

within Hp ⊕Hn. We stress again that whereas in eitherHp or Hn alone only the operators
ρ th
p (β) andρ th

n (β), respectively, withβ > 0, are meaningful, withinHp ⊕Hn the extended
ρ th(β) is meaningful. Its Dirac contour representation is given by,

ρ th(β; z1, z2) = 1− e−β

z2− e−βz1
θ [β(|z2| − e−β |z1|)]. (84)
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We next prove analogous results to those given above for the entropy operator. The
counterpart at negative temperatures of the operator given by equation (42) is

Vn(βn) ≡ ρ th
n ln ρ th

n =
∞∑
N=0

(1− e−βn)e−Nβn [−Nβn + ln(1− e−βn)]|N; n〉〈N; n| (85)

whereβn > 0. In the Dirac contour representationVn is represented by the function:

Vn(βn; z1, z2) = (1− e−βn)
[
− βnz2e−βn

[z1− z2e−βn ]2
+ ln(1− e−βn)
z1− z2e−βn

]
θ(|z1| − e−βn |z2|)

= (1− eβn)

[
βnz1eβn

[z2− z1eβn ]2
+ ln(eβn − 1)

z2− z1eβn

]
θ(|z1|eβn − |z2|). (86)

Comparing equations (42) and (86) we see that equation (86) is the analytic continuation
of equation (42) into the forbidden region. Hence, we define the operator,

V (β; z1, z2) =
{
Vp(βp = β; z1, z2) β > 0

Vn(βn = −β; z1, z2) β < 0
(87)

within the extended Hilbert spaceH. Its Dirac contour representation is the function

V (β; z1, z2) = (1− e−β)
[
− βz1e−β

[z2− z1 exp(−β)]2
+ ln |(1− e−β)|
z2− z1 exp(−β)

]
θ(β(|z2| − e−β |z1|)).

(88)

4. The harmonic oscillator formalism in H

We consider the position and momentum operators inH :

x = xp + xn = 2−1/2(a† + a) (89)

p = pp − pn = 2−1/2i(a† − a) (90)

where xp, pp and xn, pn are the position and momentum operators inHp and Hn
correspondingly. We easily show

[x, p] = iJ (91)

whereJ is the operator of equation (61). The eigenstates ofxp andxn are|x;p〉 and|x; n〉
correspondingly. In terms of them we can write the resolutions of the identity:∫

dx |x;p〉〈x;p| = πp (92)∫
dx |x; n〉〈x; n| = πn (93)

whereπp andπn are projection operators onto the Hilbert spacesHp andHn, denoted in
the previous section as1p and1n correspondingly:

πp = 1p =
∞∑
N=0

|N;p〉〈N;p| (94)

πn = 1n =
∞∑
N=0

|N; n〉〈N; n|. (95)
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We also introduce the ‘temperature reversal’ operator,

T =
∞∑
N=0

|N;p〉〈N; n| +
∞∑
N=0

|N; n〉〈N;p|

=
∫

dx |x;p〉〈x; n| +
∫

dx |x; n〉〈x;p| (96)

which, acting on a state inHn, changes it into its counterpart inHp; and vice versa. We
easily see that

T = T † T 2 = 1 (97)

T πpT
† = πn T J + JT = 0 (98)

T apT
† = an T a†pT

† = a†n (99)

T anT
† = ap T a†nT

† = a†p (100)

T aT † = a† T a†T † = a. (101)

We next consider the displacement operator,

D(A) = exp[Aa† − A∗a] = Dp(A)πp +Dn(−A∗)πn (102)

where

Dp(A) ≡ exp[Aa†p − A∗ap] (103)

Dn(A) ≡ exp[Aa†n − A∗an]. (104)

It is easy to prove the following relations for the effect on the displacement operators of
temperature reversal,

TD(A)T † = D(−A∗) (105)

TDp(A)T
† = Dn(A) (106)

TDn(A)T
† = Dp(A). (107)

We can also easily prove the compound relation:

D(A)D(B) = D(A+ B) exp[1
2(AB

∗ − A∗B)J ]

= πpDp(A+ B) exp[1
2(AB

∗ − A∗B)] + πnDn(A+ B) exp[− 1
2(AB

∗ − A∗B)].
(108)

The mode of action of the displacement operator on the annihilation and creation operators
is given by

D(A)aD†(A) = a − AJ = (ap − Aπp)+ (a†n + Aπn) (109)

D(A)a†D†(A) = a† − A∗J = (a†p − A∗πp)+ (an + A∗πn). (110)

Using equation (55) and the known result [13],

〈M|D(A)|N〉 =
[
N !

M!

]1/2

AM−N exp

(
−1

2
|A|2

)
LM−NN (|A|2) (111)

where LM−NN are Laguerre polynomials, we prove that the displacement operators are
represented by the following functions in the Dirac contour representation,

Dp(A)→ exp

[
−1

2
|A|2+ Az1

]
1

z2− z1+ A∗ |z2| > |z1− A∗| (112)

Dn(A)→ exp

[
−1

2
|A|2− A∗z2

]
1

z1− z2− A |z2| < |A| |z2+ A| < |z1|. (113)
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By acting withDp(A) on the ket vacuum we get coherent states:

Dp(A)|0;p〉 ≡ |A;p〉 →
∮
C

dz2

2π i
exp

[
−1

2
|A|2+ Az1

]
1

z2− z1+ A∗

= exp

[
−1

2
|A|2+ Az1

]
(114)

where the pointz1 − A∗ is inside the contourC in the z2-plane, in agreement with the
inequality in equation (112). This result is in agreement with equation (15) for coherent
states. Similarly, by acting withDp(A) on the bra vacuum we get

〈0;p|Dp(A) = 〈−A;p| →
∮
C

dz1

2π i
exp

(
−1

2
|A|2+ Az1

)
1

z1(z2− z1+ A∗)
= exp

(
−1

2
|A|2

)
1

z2+ A∗ (115)

where in thez1-plane the origin is inside the contourC and the pointz2 + A∗ is outside
the contourC, in agreement with the inequality in equation (112). This result agrees with
equation (16). Similar results can be given for|A; n〉 and〈A; n|.

Resolutions of the identity in terms of the coherent states are:∫
d2A

π
|A;p〉〈A;p| = πp (116)∫

d2A

π
|A; n〉〈A; n| = πn. (117)

From these equations we get∫
d2A

π
|A;p〉〈A;p| +

∫
d2A

π
|A; n〉〈A; n| = 1 (118)∫

d2A

π
|A;p〉〈A;p| −

∫
d2A

π
|A; n〉〈A; n| = J. (119)

5. Discussion

The concept of negative temperature has been studied extensively in the context of classical
thermodynamics. In this paper (and in [3]) we have studied this concept in the context of
quantum statistical mechanics. We have introduced explicitly a Hilbert space and related
creation and annihilation operators for negative temperatures, and studied them in relation
to their counterparts at positive temperatures.

In section 2 we have discussed the standard harmonic oscillator (at positive temperatures)
in the Dirac contour representation. This representation is interesting even if we are
studying positive temperatures only; but it is also well suited for generalizations to negative
temperatures. In section 3 we have introduced explicitly the Hilbert space for negative
temperatures, and have studied its properties. In section 4 we have extended further
the formalism and studied rather fully the properties of operators in the enlarged Hilbert
spaceHp ⊕ Hn. These properties reveal deep connections between positive and negative
temperatures.

From a more physical point of view negative temperatures can be useful in the
description of systems that are excited to higher states and which decay into lower states (e.g.
Glauber’s inverted oscillator [2]). If we try to describe these physical situations confining
ourselves only to the positive temperature Hilbert space, we arrive at non-normalizable
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wavefunctions which indicate precisely the fact that the Hilbert space is too small for the
problem under consideration. From this point of view the concept of negative temperature
provides the necessary enlargement of the Hilbert space.

It is perhaps relevant to explain briefly the route that we followed in arriving at
these concepts. In [14] we have introduced generalized temperature-dependentP andQ
representations in terms of thermal coherent states. We have noted that such generalizedP

andQ representations formally represent the analytic continuation of each other to negative
temperatures. However, such a comment can only be made rigorous within an appropriate
formalism for negative temperatures. The present work provides just such a rigorous
foundation for our earlier work. An alternative and simpler proof of the continuation
betweenP andQ representations as we go from positive to negative temperatures can now
be given, which relies on the above mappingap ↔ a

†
n, a

†
p ↔ −ãn betweenHp andHn, and

on the well known result that theP andQ representations of a given operator are related,
respectively, to its antinormal- and normal-ordered forms.

In summary, we have shown that the Dirac contour representation easily and elegantly
accommodates an extended Hilbert space suitable for the description of quantum physics at
negative temperatures. In future publications we intend to demonstrate that the formalism
can usefully be applied to specific problems of topical interest in quantum optics, quantum
electronics, and solid-state optoelectronics.
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